Водоочистные сооружения

ЗАО “СПИНОКС”

Документ без названия

Водоочистные сооружения

Водоочистные сооружения используются для очистки питьевой воды, обеспечения требуемых эпидемических и радиационных показателей, химического состава. Находятся на водопроводных станциях. Кроме того существуют технические системы для очистки сточных вод.
Водопроводные ВОС представляют собой оборудование, обеспечивающее ввод и смешение реагентов с обрабатываемой водой, хлопьеобразование, удаление примесей из воды и ее обеззараживание; сооружения для обработки промывных вод фильтров и контактных осветлителей; сооружения для обработки осадка; сооружения и оборудование реагентных хозяйств.

Сооружения ВОС для извлечения из воды примесей бывают одно-, двух- и многоступенчатые.
Одноступенчатые представляют собой фильтровальные водоочистные сооружения, предназначенные для осветления и обесцвечивания вод (напр., схемы с медленными фильтрами, контактными фильтрами и контактными осветлителями).
ВОС, работающие по двухступенчатой схеме, используются для получения воды питьевого качества при значительном колебании состава исходной воды. На первой ступени применяют грязеемкие сооружение (отстойники, осветлители со взвешенным осадком или флотаторы), на второй – скорые фильтры для полного осветления воды.
водоочистные сооружения, работающие по многоступенчатой схеме, состоят из нескольких ступеней фильтровальных сооружений.

Методы очистки воды

Проблема очистки воды охватывает вопросы физических, химических и биологических ее изменений в процессе обработки с целью сделать ее пригодной для питья, т. е. очистки и улучшения ее природных свойств.
Основными методами очистки воды для хозяйственно-питьевого водоснабжения являются осветление, обесцвечивание и обеззараживание.

- Осветление воды путем осаждения взвешенных веществ. Эту функцию выполняют осветлители, отстойники и фильтры, представляющие собой наиболее распространенные водоочистные сооружения. В осветлителях и отстойниках вода движется с замедленной скоростью, вследствие чего происходит выпадение в осадок взвешенных частиц.
В целях осаждения мельчайших коллоидных частиц, которые мгут находиться во взвешенном состоянии неопределенно долгое время, к воде прибавляют раствор коагулянта (обычно сернокислый алюминий, железный купорос или хлорное железо). В результате реакции в емкостях ВОС коагулянта с солями многовалентных металлов, содержащимися в воде, образуются хлопья, увлекающие при осаждении взвеси и коллоидные вещества.

Коагуляцией примесей воды называют процесс укрупнения мельчайших коллоидных и взвешенных частиц, происходящий вследствие их взаимного слипания под действием сил молекулярного притяжения.

Фильтрование — самый распространенный метод отделения твердых частиц от жидкости. При этом из раствора могут быть выделены не только диспергированные частицы, но и коллоиды.
В процессе фильтрования происходит задержание взвешенных веществ в порах фильтрующей среды и в биологической пленке, окружающей частицы фильтрующего материала. Вода освобождается от взвешенных частиц, хлопьев коагулянта и большей части бактерий.

- Обесцвечивание воды, т.е. устранение или обесцвечивание различных окрашенных коллоидов или полностью растворенных веществ может быть достигнуто коагулированием, применением различных окислителей (хлор и его производные, озон, перманганат калия) и сорбентов (активный уголь, искусственные смолы).

- Обеззараживание воды, или ее дезинфекция, заключается в полном освобождении воды от болезнетворных бактерий. Так как полного освобождения ни отстаивание, ни фильтрование не дают, с целью дезинфекции воды применяют хлорирование и другие способы, описанные ниже.

Этапы очистки воды

Чтобы очистка была полной, водоочистные сооружения должны устранить все категории загрязнителей.
Мусор и песок удаляются на этапе предочистки.Сочетание первичной и вторичной очистки, проводимое на ВОС, позволяет избавиться от коллоидного материала. Растворенные биогены устраняются при помощи доочистки.

Необходимо также иметь в виду, что обработка стоков, проходящих через водоочистные сооружения, в каждом конкретном случае не обязательно должна включать в себя все четыре этапа. Чаще всего они дополняют друг друга в зависимости от
обстоятельств. Следовательно, в некоторых местах в водоемы все еще сбрасывают просто исходные стоки, в других - осуществляют только первичную их очистку, кое-где проводят вторичную, и лишь немного городов осуществляет доочистку водостоков.

Предочистка. Мусор и песок обычно засоряют систему и тормозят дальнейшую очистку стоков. Поэтому их устранение считается ее предварительным этапом. От мусора избавляются, пропуская исходные стоки через стержневую решетку, присутствующую на любых ВОС, т.е. ряда стержней, расположенных на расстоянии около 2,5 см. друг от  руга. Затем мусор механически собирают с решетки и отправляют в специальную печь для сжигания. Очищенная от мусора вода попадает в песколовку, или пескоотстойник, - емкость, напоминающую плавательный бассейн, где движение воды замедляется настолько, что песок оседает; затем он механически извлекается оттуда и вывозится на свалку.

Первичная очистка. После предочистки вода проходит первичную очистку – медленно пропускается на водоочистных сооружениях через крупные баки, называемые первичными отстойниками. Здесь она в течение нескольких часов остается почти неподвижной. Это позволяет самым тяжелым частицам органического вещества, составляющим 30-50% его общего количества, осесть на дно, откуда их собирают. В то же самое время жирные и маслянистые вещества всплывают к поверхности, и их снимают как сливки. Весь этот материал называется ил-сырец.

При первичной очистке всего-навсего «заливают грязную воду в сосуд, дают отстояться и сливают». Тем не менее это позволяет устранить значительную часть органического вещества при минимальных затратах. Вода, покидающая первичные  отстойники, преходящая к другим водоочистным сооружениям, все еще содержит 50-70% не осевших органических коллоидов и почти все растворенные биогены.
Вторичная очистка предусматривает устранение оставшегося органического
вещества, но не растворенных питательных элементов.

Вторичная очистка. Эту очистку называют также биологической, так как в ней участвуют живые естественные редуценты и детритофаги, потребляющие органическое вещество и в процессе дыхания превращающие его в воду и углекислый газ. Обычно применяются два типа систем: капельные биофильтры и активный ил, придающие разные черты водоочистным сооружениям.

В системах с капельным биофильтром вода разбрызгивается и стекает струйками по слою камней величиной с кулак, толщина которого 2-3 м. Как и в естественных ручьях, в этих условиях функционирует сложная экосистема, включающая бактерии, простейших коловраток, различных мелких червей и других прикрепленных к камням детритофагов. Они буквально выедают из протекающей воды все органическое вещество, включая патогенов. Организмы, случайно смытые с биофильтров, позднее устраняются из воды, когда она попадает во вторичные отстойники-емкости, аналогичные первичным отстойникам, находящимс в общей структуре ВОС. С отстоявшимся в них материалом поступают, как и с илом-сырцом. Пройдя первичную очистку и капельные биофильтры, сточные воды теряют 85-90% органического вещества.

Все более широкое распространение получает еще один метод вторичной очистки – система активного ила. В этом случае вода после первичной очистки поступает в резервуар ВОС, где могли бы разместиться несколько припаркованных друг за другом трейлеров. Смесь детритофагов, называемая активным илом, добавляется в воду, когда та поступает в резервуар из предыдущих водоочистных сооружений. По мере движения по нему она интенсивно аэрируется, т.е. создается богатая кислородом среда, идеальная для развития этих организмов. В ходе их питания количество органического вещества, включая патогенные микроорганизмы, уменьшается.

Покидая аэрационный резервуар, стремясь в следующие водоочистные сооружения, вода содержит множество детритофагов, поэтому ее направляют во вторичные отстойники. Так как организмы обычно собираются в кусочках детрита,  осадить их относительно несложно; осадок представляет собой тот же самый активный ил, который снова закачивают в аэрационный резервуар. Таким образом, детритофаги рециклизуются, а вода очищается от органического вещества, проходя через указанные водоочистные сооружения, на 90-95%. Излишки активного ила, накапливающиеся в  процессе размножения организмов, обычно объединяют с илом-сырцом и в дальнейшем обрабатывают их вместе.
Системы вторичной очистки не устраняют растворенных биогенов. До двух последних десятилетий не ощущалось на водоочистных сооружениях острой необходимости осуществлять дополнительную очистку воды уже после вторичной. Воду после нее просто дезинфицировали хлоркой и сбрасывали в естественные водоемы.
Такая ситуация преобладает и сейчас. Однако по мере обострения проблемы эвтрофизации все больше городов вводят еще один этап - доочистку, устраняющую биогены.

Доочистка.

После вторичной очистки вода поступает на доочистку, устраняющую один или более биогенов. Для этого существует множество способов. На 100% воду можно очистить дистилляцией или микрофильтрованием. Однако это требует больших затрат. Суммарный объем стоков – около 150 галлонов в день на человека. Очистка такого количества воды названными методами на водоочистных сооружениях слишком расточительна, поэтому в настоящее время разрабатываются и внедряются более доступные способы.
Например, фосфаты можно устранить, добавив в воду известь (ионы кальция). Кальций вступает в химическую реакцию с фосфатом, образуя при этом нерастворимый фосфат кальция, который можно удалить фильтрованием.
Если избыток фосфата – основная причина эвтрофизации, этого уже достаточно.

При соответствующей доочистке, при качественной аппаратуре ВОС можно добиться того, что в конечном итоге получится вода, пригодная для питья. Многие люди бледнеют при мысли о вторичном использовании канализационных стоков, но стоит вспомнить о том, что в природе в любом случае вся вода совершает круговорот. Фактически соответствующая доочистка может обеспечить воду лучшего качества, нежели получаемая из рек и озер, не редко принимающих неочищенные канализационные стоки.

Выбор места расположения водоочистных сооружений и определение требуемых площадей.

При устройстве хозяйственно-питьевого водоснабжения важное значение имеет вопрос о выборе места расположения водопроводных станций, включающих водозаборные и водоочистные сооружения, насосные станции и водоводы.
Место расположения водозаборных сооружений должно выбираться возможно ближе к водопотребителю. При использовании поверхностного источника водозабор должен быть расположен выше обслуживаемого населенного пункта по течению реки, чтобы поверхностный сток и вышерасположенные населенные пункты не оказывали влияния на качество воды. При использовании подземного источника водоснабжения место расположения колодцев или каптажных сооружений назначают с учетом возможных источников загрязнения подземных вод, направления и скорости подземного потока.

Площадка для размещения водоочистных сооружений должна обеспечить не только возможность организации зоны санитарной охраны, но и иметь удобный рельеф и надежные подъезды к станции.
Желательно, чтобы рельеф территории в границах водопроводной станции обеспечивал движение воды самотеком через все водоочистные сооружения с минимальным объемом земляных работ при минимальном заглублении сооружений в землю.

При выборе площадки водоочистных сооружений необходимо учитывать уровень грунтовых вод, так как высокий уровень грунтовых вод на площадке размещения водоочистной станции может решающим образом повлиять на степень заглубления основных сооружений станции и вызвать значительное увеличение объема земляной подсыпки сооружений, располагаемых вне зданий.
При определении требуемой площади для размещения станции улучшения качества воды следует руководствоваться СНиПом, учитывающим не только производительность станции, что определяет габариты водоочистных сооружений, но и возможность дальнейшего ее расширения в соответствии с развитием водопотребления города. В этой связи важное значение имеет компоновка основных и вспомогательных сооружений станции, минимальная протяженность внутристанционных коммуникаций.

Эксплуатация водоочистных сооружений

Основными задачами при эксплуатации очистных сооружений систем водоснабжения являются:
•    производство питьевой воды, удовлетворяющей требованиям ГОСТ 2874-82;
•    обеспечение надежности очистки и обеззараживания воды;
•    обеспечение эффективной бесперебойной и надежной работы водоочистных сооружений;
•    снижение себестоимости очистки и обеззараживания воды;
•    экономия реагентов, электроэнергии и воды на собственные нужды;
•    систематический лабораторно-производственный и технологический контроль работы водоочистных сооружений и качества производства воды.

На действующих водоочистных сооружениях хранится следующая техническая документация: схема зон санитарной охраны источника водоснабжения и очистных сооружений; генеральный план и высотная схема водоочистных сооружений с нанесением всех коммуникаций; оперативная технологическая схема очистных сооружений; схема автоматизации и телемеханизации.
После окончания строительства очистные комплексы или отдельные ВОС вводятся в постоянную эксплуатацию после проведения пробной эксплуатации и приемки их по акту приемочными комиссиями.

До проведения пробной эксплуатации комиссия устанавливает соответствие выстроенных сооружений с утвержденным проектом, проверяют размеры сооружений и их элементов, наличие и правильность установки приборов и устройств и т. п.
Перед началом пробной эксплуатации следует продезинфицировать все сооружения очистного комплекса и особенно загрузочный материал фильтров и. контактных осветлителей. Все бетонные сооружения и трубы необходимо обработать раствором, содержащим 50 мг/л активного хлора, а загрузочный материал - раствором, содержащим не менее 100 мг/л активного хлора. После проведения дезинфекции приступают к пробной эксплуатации, которая продолжается в течение 24 ч. Если получаемая после обработки вода отвечает всем требованиям ГОСТа, то очистные сооружения вводят в постоянную эксплуатацию.

Лабораторно-производственный контроль является необходимым условием организации рациональной эксплуатации водоочистных сооружений и обеспечения производства воды, удовлетворяющей по качеству требованиям ГОСТ 2874-82.
Лабораторно-производственный контроль организуют на всех этапах и стадиях очистки воды как для оценки количественных и качественных показателей работы водоочистных сооружений, так и для регистрации количества и качества обрабатываемой воды. В зависимости от производительности водоочистных сооружений и степени сложности применяемой технологии очистки воды для лабораторно-производственного контроля создают физико-химическую, бактериологическую, гидробиологическую, технологическую и другие лаборатории, а также отдел КИПиА.

Помимо лабораторно-производственного контроля на водоочистных комплексах осуществляют технологический контроль, основная задача которого состоит в оценке технологической эффективности работы сооружений и аппаратов для своевременного принятия мер по их бесперебойной работе при надлежащей степени улучшения качества воды при заданной производительности.
При этом эксплуатационный персонал обязан: вести контроль за ходом технологического процесса и качеством обработки воды; регулировать количество воды, подаваемой на водоочистные сооружения и отводимой в резервуары чистой воды; наблюдать за уровнями и равномерностью распределения воды между отдельными водоочистными сооружениями и их блоками, уровнями воды в резервуарах чистой воды, за осадками в камерах, отстойниках, осветлителях, реагентных баках, за потерями напора в фильтровальных сооружениях, за накоплением осадка и т. п.; проверять правильность переключения отдельных водоочистных сооружений, их секций, трубопроводов, а также реагентных установок; содержать в исправности механическое оборудование, КИП и автоматику, дроссельные и измерительные устройства и другое оборудование; удостовериться в наличии запаса и в качестве реагентов, фильтрующих материалов, вести наблюдение за правильностью их хранения; следить за своевременной заготовкой растворов реагентов требуемой концентрации; проверять горизонтальность перелива воды через кромки желобов, лотков, водоприемных и водораспределительных окон и т. п.; наблюдать за режимом дозирования реагентов.
Структура и состав водоочистных сооружений

На примере типовой схемы очистной станции водопровода показан комплекс составляющих ее элементов (рис.1).
Главнейшие из этих элементов следующие:

Насосная станция первого подъема, подающая воду на водоочистные сооружения.
Смеситель 2, обеспечивающий перемешивание раствора коагулянта, поступающего из реагентного хозяйства 3, с обрабатываемой водой.
В практике применяют гидравлические и механические типы смесителей. На схеме показан дырчатый смеситель, представляющий собой лоток с дырчатыми перегородками, в котором происходит перемешивание воды с раствором коагулянта.


 

Рис.1

Камера реакции 4, в которой завершается химическая реакция и образуются хлопья коагулянта. На схеме приводится камера реакции, помещаемая внутрь вертикального отстойника в структуре ВОС. Хлопьеобразование в ней завершается в течение 10...15 мин.
Отстойники 5, которые в зависимости от направления движения воды подразделяются на горизонтальные, вертикальные и радиальные. Горизонтальный отстойник в плане — прямоугольник. Глубина его 3...5 м. Вода движется через отстойник к другим ВОС со скоростью, не превышающей 5 мм/с, а при коагулировании — 10 мм/с. В целях равномерного распределения потока в поперечном сечении отстойника предусматривается конструктивная деталь, обеспечивающая равномерное поступление воды в отстойник и отвод ее, например дырчатая стенка.
На станциях меньшей производительности в составе ВОС применяют вертикальные отстойники, состоящие из двух цилиндров, вложенных один в другой. Диаметр внешнего цилиндра — не больше 12 м. Отношение диаметра к высоте отстойника (D/H) принимают в пределах 1,2...2. Вода поступает во внутренний цилиндр, в котором находится камера реакции, опускается вниз, затем осветляется, поднимаясь в вертикальном направлении вверх по среднему кольцевому пространству со скоростью 0,5...0,75 мм/с. Осветленная вода через отводящие желоба отводится трубой или по каналу на фильтр.

Радиальные отстойники диаметром от 5 до 60 м занимают среднее положение между горизонтальными и вертикальными отстойниками. Вода попадает в центральную часть отстойника и, постепенно уменьшая скорость, движется в радиальном направлении к лотку, расположенному вдоль периферийной части, из которого отводится.

Дно отстойника устраивают с уклоном к грязевому приямку или лотку, откуда выпавший осадок непрерывно или периодически удаляется насосом или самотеком сбрасывается в водосток.

Осветлители в составе ВОС, конструкция которых в основном не отличается от конструкции вертикального отстойника, дают значительный эффект осветления, позволяя при этом снизить расход коагулянта и сократить размер сооружений. Осветляемая вода проходит в восходящем движении слой осадка высотой 2...2,5 м, находящегося во взвешенном состоянии (так называемая суспензионная сепарация).
В процессе работы осветлителя происходит укрупнение хлопьев коагулянта, задерживающих часть взвеси. В настоящее время осветлители широко применяют как в городских, так и в промышленных водоочистных сооружениях. В некоторых случаях вертикальные отстойники переоборудуют на осветлители.

Фильтрование в типичных водоочистных сооружениях состоит в пропуске воды через фильтр 6, заполненный фильтрующим материалом (обычно кварцевым песком), уложенным слоями возрастающей сверху вниз крупности. Вода поступает на поверхность фильтра, движется сквозь слои фильтрующего материала и дренажным устройством отводится в резервуар чистой воды. В процессе работы фильтр заполнен водой до уровня 1...1.5 м над поверхностью фильтрующего материала.
Фильтры делаются в зависимости от типа ВОС открытыми безнапорными и закрытыми напорными.
Напорные фильтры представляют собой закрытые стальные резервуары. В применяемых в настоящее время скорых фильтрах скорость прохождения водой фильтрующего материала, или скорость фильтрации, равна 6...7 м/ч в отличие от громоздких медленных фильтров, применявшихся ранее, в которых скорость фильтрации была меньше в 50...60 раз.
Количество фильтров на очистной станции — не менее двух. Площадь одного фильтра от 10...20 м2 на малых и средних станциях, до 100 м2 и более — на больших.
После фильтров вода может поступать непосредственно потребителю.

Создание сайта - НИИ Электронных образовательных ресурсов    Design Banda-Panda
Copyright © ЗАО “СПИНОКС” 2017
625049 Тюмень, ул. Московский тракт, 140/1
Написать письмо...
(+7 3452) 30-71-72